Robotic environmental DNA bio-surveillance of freshwater health

Author:

Sepulveda Adam J.,Birch James M.,Barnhart Elliott P.,Merkes Christopher M.,Yamahara Kevan M.,Marin Roman,Kinsey Stacy M.,Wright Peter R.,Schmidt Christian

Abstract

AbstractAutonomous water sampling technologies may help to overcome the human resource challenges of monitoring biological threats to rivers over long time periods and across large geographic areas. The Monterey Bay Aquarium Research Institute has pioneered a robotic Environmental Sample Processor (ESP) that overcomes some of the constraints associated with traditional sampling since it can automate water sample filtration and preservation of the captured material. The ESP was originally developed for marine environment applications. Here we evaluated whether the ESP can provide reliable, timely information on environmental (e)DNA detections of human and fish pathogens and introduced fishes at U.S. Geological Survey streamgage sites in freshwater rivers. We compared eDNA collected via ESP at high frequency (e.g., every 3 h) with manual eDNA collections collected at lower frequency (e.g., weekly). We found that water samples filtered and preserved by ESPs successfully detected the DNA of human pathogens, fish pathogens and introduced fishes. Both ESP and manually collected samples provided similar information about target DNA presence. We suggest that the greatest current benefit of the ESP is the cost savings of high frequency, bio-surveillance at remote or hard to access sites. The full potential of robotic technologies like the ESP will be realized when they can more easily execute in situ analyses of water samples and rapidly transmit results to decision-makers.

Funder

USGS Ecosystems Mission Area

USGS National Innovation Center

USGS/NPS Water Quality Partnership Program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3