Effect of water soluble humic acid applied to potato foliage on plant growth, photosynthesis characteristics and fresh tuber yield under different water deficits

Author:

Man-hong Yang,Lei Zhang,Sheng-tao Xu,McLaughlin Neil B.,Jing-hui Liu

Abstract

AbstractWater scarcity is the main limiting factor in agricultural crop production in arid and semi-arid areas in northern China. Humic acid could improve the plant resistance to mitigate the abiotic drought damages, which is a potential strategy to improve the crop production in these regions. An experiment to investigate the effect of water soluble humic acid on plant growth, photosynthesis characteristics and fresh tuber yield of potato under different water deficits was carried out under greenhouse conditions in 2014 and 2015. Treatments included foliar application of fresh water (FW), humic acid diluted with water 500 times (HA) and control (CK), and the water deficits included 45%, 60% and 75% of the field water holding capacity. The HA treatment showed highly significant (P ≤ 0.01) effect on dry biomass, root/shoot ratio and photosynthesis parameters, improved the dry biomass above ground (DM-AG) by 14.12–36.63%, 11.62–36.26% and 7.85–20.85% over the whole growing season at water deficits of 45%, 60% and 75% of the field water holding capacity respectively in 2014 and 2015; decreased the root/shoot (R/S) ratio in the early growing season and increased the R/S ratio in the later growing season; showed an improved effect on leaf soil plant analysis development (SPAD), photosynthesis rate (Pn) and stomatal conductance (Gs) and decreased transpiration rate (Tr) and intercellular CO2 concentration (Ci) compared with the control. HA usually showed a better effect on photosynthesis parameters in 60% of the field water holding capacity than 45% and 75% except on Pn. Compared with control, HA increased fresh tuber yield by 34.47–63.48%, 35.95–37.28% and 23.37–27.15% at 45%, 60% and 75% of the field water holding capacity respectively. HA enhanced the potato plant growth, and improved photosynthesis parameters and fresh tuber yield under different water deficits under green house conditions, and represents an opportunity to improve crop production and sustainability of agriculture in arid and semiarid regions.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3