Boosting the adsorptive and photocatalytic performance of MIL-101(Fe) against methylene blue dye through a thermal post-synthesis modification

Author:

Fattahi Mehdi,Niazi Zohreh,Esmaeili Fatemeh,Mohammadi Ali Akbar,Shams Mahmoud,Nguyen Le Binh

Abstract

AbstractPhotocatalytic degradation under ultra-low powered light is a viable advanced oxidation process technique against extensive emerging contaminants. As a new and remarkable class of nanoporous materials, metal-organic frameworks (MOFs), attract interest for the supreme adsorptive and photocatalytic functionalities. An outstanding MOF, MIL-101(Fe) chosen as a photocatalyst template for the synthesis of α-Fe2O3 by a simple thermal modification to improve the structural properties toward methylene blue (MB) eradication. Octahedron-like α-Fe2O3 photocatalyst (Modified MIL-101(Fe), M-MIL-101(Fe)) was superior in dispersion and separation properties in aqueous medium. Moreover, the adsorptive and catalytic performance was increased for modified form by ~ 7.3% and ~ 17.1% compared to pristine MIL-101(Fe), respectively. Synergistic improvement of MB removal achieved by simultaneous adsorption/degradation under 5-W LED irradiation. Parametric study indicated an 18.1% and 44.5% improvement in MB removal was observed by increasing pH from 4 to 10, and M-MIL-101(Fe) dose from 0.2 to 1 g L−1, respectively. MB removal followed the pseudo-second-order kinetics model and the process efficiency dropped by 38% as MB concentration increased from 5 to 20 mg L−1. Radical trapping tests revealed the significant role of $${\mathrm{OH}}^{.}$$ OH . and electron radicals as the major participants in dye degradation. A significant loss in the efficiency of M-MIL-101(Fe) was observed in the reusability tests that is good to study further. In conclusion, a simple thermal post-synthesis modification on MIL-101(Fe) improved its structural, catalytic, and adsorptive properties against MB.

Funder

Mashhad University of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3