Determining regional brain growth in premature and mature infants in relation to age at MRI using deep neural networks

Author:

Beizaee Farzad,Bona Michele,Desrosiers Christian,Dolz Jose,Lodygensky Gregory

Abstract

AbstractNeonatal MRIs are used increasingly in preterm infants. However, it is not always feasible to analyze this data. Having a tool that assesses brain maturation during this period of extraordinary changes would be immensely helpful. Approaches based on deep learning approaches could solve this task since, once properly trained and validated, they can be used in practically any system and provide holistic quantitative information in a matter of minutes. However, one major deterrent for radiologists is that these tools are not easily interpretable. Indeed, it is important that structures driving the results be detailed and survive comparison to the available literature. To solve these challenges, we propose an interpretable pipeline based on deep learning to predict postmenstrual age at scan, a key measure for assessing neonatal brain development. For this purpose, we train a state-of-the-art deep neural network to segment the brain into 87 different regions using normal preterm and term infants from the dHCP study. We then extract informative features for brain age estimation using the segmented MRIs and predict the brain age at scan with a regression model. The proposed framework achieves a mean absolute error of 0.46 weeks to predict postmenstrual age at scan. While our model is based solely on structural T2-weighted images, the results are superior to recent, arguably more complex approaches. Furthermore, based on the extracted knowledge from the trained models, we found that frontal and parietal lobes are among the most important structures for neonatal brain age estimation.

Funder

IVADO (Institut de valorisation des donnèes) Fundamental Research Funding program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3