Evaluation of eco-environmental quality for the coal-mining region using multi-source data

Author:

Jiang Huan,Fan Gangwei,Zhang Dongsheng,Zhang Shizhong,Fan Yibo

Abstract

AbstractThe contradiction between the exploitation of coal resources and the protection of the ecological environment in western China is becoming increasingly prominent. Reasonable ecological environment evaluation is the premise for alleviating this contradiction. First, this paper evaluates the eco-environment of Ibei coalfield by combining the genetic projection pursuit model and geographic information system (GIS) and using remote sensing image data and other statistical data of this area. The powerful spatial analysis function of GIS and the advantages of the genetic projection pursuit model in weight calculation have been fully used to improve the reliability of the evaluation results. Furthermore, spatial autocorrelation is used to analyze the spatial characteristics of ecological environment quality in the mining area and plan the specific governance scope. The geographic detector is used to determine the driving factors of the eco-environment of the mining area. The results show that Ibei Coalfield presents a spatially heterogeneous eco-environment pattern. The high-intensity mining area (previously mined area of Ili No.4 Coal Mine) has the worst ecological environment quality, followed by the coal reserve area of Ili No.4 Coal Mine and the planned survey area of Ili No.5 Coal Mine. The eco-environment quality (EEQ) of the study area is affected by both human and natural factors. Mining intensity and surface subsidence are the main human factors affecting the ecological environment in the study area. The main natural factors affecting the ecological environment in the study area are annual average precipitation, elevation, annual average evaporation, NDVI and land use type. Meanwhile, the interaction effect of any two indicators is greater than that of a single indicator. It is also indicated that the eco-environment of the mining area is nonlinearly correlated to impact indicators. The spatial autocorrelation analysis shows three areas that should be treated strategically that are the management area, close attention area and protective area. Corresponding management measures are put forward for different regions. This paper can provide scientific references for mining area eco-environmental protection, which is significant for the sustainability of coal mine projects.

Funder

Fundamental Research Funds for the Central Universities

Shanxi Province Unveils Bidding Project

National Natural Science Foundation

Postgraduate Research & Practice Innovation Program of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3