TIRAP-mediated activation of p38 MAPK in inflammatory signaling

Author:

Rajpoot Sajjan,Kumar Ashutosh,Zhang Kam Y. J.,Gan Siew Hua,Baig Mirza S.

Abstract

AbstractThe role of TIRAP (toll/interleukin-1 receptor (TIR) domain-containing adapter protein) in macrophage inflammatory signalling has been significantly evolved since its discovery in 2001 due to its dynamic nature and subcellular localization to regulate multiple signaling through several protein–protein interactions (PPIs). Structural analysis of these interactions can reveal a better understanding of their conformational dynamics and the nature of their binding. Tyrosine phosphorylation in the TIR domain of TIRAP is very critical for its function. In toll-like receptor (TLR) 4/2 signalling, Bruton's tyrosine kinase (BTK) and Protein kinase C delta (PKCδ) are known to phosphorylate the Y86, Y106, Y159, and Y187 of TIRAP which is crucial for the downstream function of MAPKs (mitogen-activated protein kinases) activation. The objective of this study is to understand the interaction of TIRAP with p38 MAPK through molecular docking and identify the importance of TIRAP tyrosine phosphorylation in p38 MAPK interaction. In this structural study, we performed an in-silico molecular docking using HADDOCK 2.4, pyDockWEB, ClusPro 2.0, and ZDOCK 3.0.2 tools to unravel the interaction between TIRAP and p38 MAPK. Further, manual in-silico phosphorylations of TIRAP tyrosines; Y86, Y106, Y159, and Y187 was created in the Discovery Studio tool to study the conformational changes in protein docking and their binding affinities with p38 MAPK in comparison to non-phosphorylated state. Our molecular docking and 500 ns of molecular dynamic (MD) simulation study demonstrates that the Y86 phosphorylation (pY86) in TIRAP is crucial in promoting the higher binding affinity (∆Gbind) with p38 MAPK. The conformational changes due to the tyrosine phosphorylation mainly at the Y86 site pull the TIRAP closer to the active site in the kinase domain of p38 MAPK and plays a significant role at the interface site which is reversed in its dephosphorylated state. The heatmap of interactions between the TIRAP and p38 MAPK after the MD simulation shows that the TIRAP pY86 structure makes the highest number of stable hydrogen bonds with p38 MAPK residues. Our findings may further be validated in an in-vitro system and would be crucial for targeting the TIRAP and p38 MAPK interaction for therapeutic purposes against the chronic inflammatory response and associated diseases.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3