To optimize gas flaring in Kirkuk refinery in various seasons via artificial intelligence techniques

Author:

Zoeir A.,Qajar J.,Kazemzadeh Y.,Khodapanah E.,Rastkar A.

Abstract

AbstractUnavoidable flaring in downstream oil industry causes pollutant emission in large amounts which is potentially harmful to nearby cities or farms. Hence one must manage exhaust toxic gases to raise enough in atmosphere or redirect from such places. Since Kirkuk refinery in north Iraq is next-door to agricultural farms on west yet to residential areas on east optimizing its layout for flare stacks is something acute. In this work we wrote codes in MATLAB software to simulate incomplete rather than complete oxidation as well as pollutant generation reactions. Then we made use of FLEUENT software to simulate pollutant propagation in Kirkuk oil purifier complex yet also farther to city as well as farms with respect to seasonal air currents on lowest troposphere layer. Finally, we set neural network approach to train on simulation data thereafter to unify outcomes to turn into a fast technique for layout optimization. Results show that optimization process efficiency relies on air current velocities as well as its direction. At intermediate air flow rates optimum layout includes only a selective portion of existent flare stacks. Outcomes also illustrate that heuristic techniques that have stronger local search such as particle swarm or artificial immune system can improve flare layout in seasons with intermediate air currents here summer plus early months in autumn while approaches with weak local search like Monte Carlo are more appropriate in winter for which we have no or low air flows in Kirkuk governorate.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3