Development of a fast and precise potency test for BCG vaccine viability using flow cytometry compared to MTT and colony-forming unit assays

Author:

Moghawry Hend M.,Rashed Mohamed E.,Gomaa Kareeman,AbdelGhani Sameh,Dishisha Tarek

Abstract

AbstractIn a precarious world of rapidly growing pandemics, the field of vaccine production has witnessed considerable growth. Bacillus Calmette-Guérin (BCG) is a live-attenuated vaccine and a part of the immunization program in 157 countries. The quality control is based on a potency test through viable cell enumeration. The colony-forming unit (CFU) assay is the official method, however, it often yields fluctuating results, suffers from medium cracking, and requires lengthy analysis (~ 28 days). Flow cytometric analysis was proposed earlier, but it was coupled with a Coulter counter for measuring the entire bacterial population (live/dead). In the present study, thiazole orange/propidium iodide dyes supplemented with fluorogenic reference beads were employed for viable counting, eliminating the need for a Coulter counter. Both the flow cytometry and the colorimetric technique employing tetrazolium salt were validated and compared to the CFU assay. The colorimetric assay displayed high precision, accuracy, and a strong positive correlation with the CFU assay. The flow cytometry assay demonstrated high precision and a notable ability to distinguish different forms of BCG cells (live, injured, and dead). It also exhibited a perfect positive correlation with the CFU assay. Both methods reduced the analysis time by > 26 days and eliminated the need for human intervention by automating the test.

Funder

Beni Suef University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference48 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Evaluation of the viability of the Bulgarian BCG vaccine by the adenosine triphosphate assay;Biotechnology & Biotechnological Equipment;2024-03-22

2. Quality analysis of BCG vaccine for bladder cancer immunotherapy using Shewhart control charts;Biological Products. Prevention, Diagnosis, Treatment;2024-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3