Classification of endogenous and exogenous bursts in collective emotions based on Weibo comments during COVID-19

Author:

Wu Qianyun,Sano Yukie,Takayasu Hideki,Takayasu Misako

Abstract

AbstractBursts and collective emotion have been widely studied in social physics field where researchers use mathematical models to understand human social dynamics. However, few researches recognize and separately analyze the internal and external influence on burst behaviors. To bridge this gap, we introduce a non-parametric approach to classify an interevent time series into five scenarios: random arrival, endogenous burst, endogenous non-burst, exogenous burst and exogenous non-burst. In order to process large-scale social media data, we first segment the interevent time series into sections by detecting change points. Then we use the rule-based algorithm to classify the time series based on its distribution. To validate our model, we analyze 27.2 million COVID-19 related comments collected from Chinese social media between January to October 2020. We adopt the emotion category called Profile of Mood States which consists of six emotions:Anger,Depression,Fatigue,Vigor,TensionandConfusion. This enables us to compare the burst features of different collective emotions during the COVID-19 period. The burst detection and classification approach introduced in this paper can also be applied to analyzing other complex systems, including but not limited to social media, financial market and signal processing.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3