Analysis of the research progress on the deposition and drift of spray droplets by plant protection UAVs

Author:

Weicai Qin,Panyang Chen

Abstract

AbstractPlant protection unmanned aerial vehicles (UAVs), which are highly adapted to terrain and capable of efficient low-altitude spraying, will be extensively used in agricultural production. In this paper, single or several independent factors influencing the deposition characteristics of droplets sprayed by plant protection UAVs, as well as the experimental methods and related mathematical analysis models used to study droplet deposition and drift, are systematically investigated. A research method based on farmland environmental factors is proposed to simulate the deposition and drift characteristics of spray droplets. Moreover, the impacts of multiple factors on the droplet deposition characteristics are further studied by using an indoor simulation test system for the spraying flow field of plant protection UAVs to simulate the plant protection UAVs spraying flow field, temperature, humidity and natural wind. By integrating the operation parameters, environmental conditions, crop canopy characteristics and rotor airflow, the main effects and interactive effects of the factors influencing the deposition of spray droplets can be explored. A mathematical model that can reflect the internal relations of multiple factors and evaluate and analyze the droplet deposition characteristics is established. A scientific and effective method for determining the optimal spray droplet deposition is also proposed. In addition, this research method can provide a necessary scientific basis for the formulation of operating standards for plant protection UAVs, inspection and evaluation of operating tools at the same scale, and the improvement and upgrading of spraying systems.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference67 articles.

1. Lan, Y. B., Thomson, S. J., Huang, Y. B., Hoffmann, W. C. & Zhang, H. H. Current status and future directions of precision aerial application for site-specific crop management in the USA. Comput. Electron. Agric. 74(1), 34–38 (2010).

2. Chen, T. H. & Lu, S. H. Autonomous navigation control system of agricultural mini-unmaned aerial vehicles based on DSP. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE). 28(21), 164–169 (2012) ((in Chinese with English abstract)).

3. Zhou, W. Application and popularization of agricultural unmanned plant protection helicopter. Agric. Eng. 3(S1), 56–58 (2013).

4. Lan, Y. B., Hoffmann, W. C., Fritz, B. K., Martin, D. E. & Lopez, J. D. Spray drift mitigation with spray mix adjuvants. Appl. Eng. Agric. 24(1), 5–10 (2008).

5. Zhang, D. Y., Lan, Y. B., Chen, L. P., Wang, X. & Liang, D. Current status and future trends of agricultural aerial spraying technology in China. Trans. Chin. Soc. Agric. Mach. 45(10), 53–59 (2014).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3