Graphene nanowalls formation investigated by Electron Energy Loss Spectroscopy

Author:

Vishal Badri,Reguig Abdeldjalil,Bahabri Mohammed,Costa Pedro M. F. J.

Abstract

AbstractThe properties of layered materials are significantly dependent on their lattice orientations. Thus, the growth of graphene nanowalls (GNWs) on Cu through PECVD has been increasingly studied, yet the underlying mechanisms remain unclear. In this study, we examined the GNWs/Cu interface and investigated the evolution of their microstructure using advanced Scanning transmission electron microscopy and Electron Energy Loss Spectroscopy (STEM-EELS). GNWs interface and initial root layers of comprise graphitic carbon with horizontal basal graphene (BG) planes that conform well to the catalyst surface. In the vertical section, the walls show a mix of graphitic and turbostratic carbon, while the latter becomes more noticeable close to the top edges of the GMWs film. Importantly, we identified growth process began with catalysis at Cu interface forming BG, followed by defect induction and bending at ‘coalescence points’ of neighboring BG, which act as nucleation sites for vertical growth. We reported that although classical thermal CVD mechanism initially dominates, growth of graphene later deviates a few nanometers from the interface to form GNWs. Nascent walls are no longer subjected to the catalytic action of Cu, and their development is dominated by the stitching of charged carbon species originating in the plasma with basal plane edges.

Funder

King Abdullah University of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference55 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3