Tool-tissue force segmentation and pattern recognition for evaluating neurosurgical performance

Author:

Baghdadi Amir,Lama Sanju,Singh Rahul,Sutherland Garnette R.

Abstract

AbstractSurgical data quantification and comprehension expose subtle patterns in tasks and performance. Enabling surgical devices with artificial intelligence provides surgeons with personalized and objective performance evaluation: a virtual surgical assist. Here we present machine learning models developed for analyzing surgical finesse using tool-tissue interaction force data in surgical dissection obtained from a sensorized bipolar forceps. Data modeling was performed using 50 neurosurgery procedures that involved elective surgical treatment for various intracranial pathologies. The data collection was conducted by 13 surgeons of varying experience levels using sensorized bipolar forceps, SmartForceps System. The machine learning algorithm constituted design and implementation for three primary purposes, i.e., force profile segmentation for obtaining active periods of tool utilization using T-U-Net, surgical skill classification into Expert and Novice, and surgical task recognition into two primary categories of Coagulation versus non-Coagulation using FTFIT deep learning architectures. The final report to surgeon was a dashboard containing recognized segments of force application categorized into skill and task classes along with performance metrics charts compared to expert level surgeons. Operating room data recording of > 161 h containing approximately 3.6 K periods of tool operation was utilized. The modeling resulted in Weighted F1-score = 0.95 and AUC = 0.99 for force profile segmentation using T-U-Net, Weighted F1-score = 0.71 and AUC = 0.81 for surgical skill classification, and Weighted F1-score = 0.82 and AUC = 0.89 for surgical task recognition using a subset of hand-crafted features augmented to FTFIT neural network. This study delivers a novel machine learning module in a cloud, enabling an end-to-end platform for intraoperative surgical performance monitoring and evaluation. Accessed through a secure application for professional connectivity, a paradigm for data-driven learning is established.

Funder

Canadian Institutes of Health Research

German Canadian Centre for Innovation and Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generating robotic elliptical excisions with human-like tool-tissue interactions;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. Tool-tissue interaction force in glioma surgery;Global Surgical Education - Journal of the Association for Surgical Education;2024-04-15

3. Artificial Intelligence Methods for the Construction and Management of Buildings;Sensors;2023-10-26

4. Force Profile as Surgeon-Specific Signature;Annals of Surgery Open;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3