Overnight dynamics in scale-free and oscillatory spectral parameters of NREM sleep EEG

Author:

G. Horváth Csenge,Szalárdy Orsolya,Ujma Péter P.,Simor Péter,Gombos Ferenc,Kovács Ilona,Dresler Martin,Bódizs Róbert

Abstract

AbstractUnfolding the overnight dynamics in human sleep features plays a pivotal role in understanding sleep regulation. Studies revealed the complex reorganization of the frequency composition of sleep electroencephalogram (EEG) during the course of sleep, however the scale-free and the oscillatory measures remained undistinguished and improperly characterized before. By focusing on the first four non-rapid eye movement (NREM) periods of night sleep records of 251 healthy human subjects (4–69 years), here we reveal the flattening of spectral slopes and decrease in several measures of the spectral intercepts during consecutive sleep cycles. Slopes and intercepts are significant predictors of slow wave activity (SWA), the gold standard measure of sleep intensity. The overnight increase in spectral peak sizes (amplitudes relative to scale-free spectra) in the broad sigma range is paralleled by a U-shaped time course of peak frequencies in frontopolar regions. Although, the set of spectral indices analyzed herein reproduce known age- and sex-effects, the interindividual variability in spectral slope steepness is lower as compared to the variability in SWA. Findings indicate that distinct scale-free and oscillatory measures of sleep EEG could provide composite measures of sleep dynamics with low redundancy, potentially affording new insights into sleep regulatory processes in future studies.

Funder

Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund

Hungarian National Research, Development and Innovation Office

Netherlands Organization for Scientific Research

European Cooperation in Science and Technology

Semmelweis University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3