T-shaped double-strip spoof surface plasmon polariton transmission lines and application to microwave resonators

Author:

Choi Wonseok,Jeong Jinho

Abstract

AbstractA microwave double-strip spoof surface plasmon polariton (DS SSPP) is proposed for high-speed interconnects and high-performance microwave circuits. Based on the dispersion analysis, a T-shaped double-strip structure is designed to provide strong surface- and slow-wave properties from very low to very high frequencies (~ 40 GHz). It allows the tight field confinement and greatly reduces the electromagnetic wave leakage. It exhibits broadband performance with reduced ripples in the insertion loss. It also shows more constant group delay and impedance than counterpart single-strip SSPP. The compact coaxial-to-microstrip-to-DS SSPP transition are designed using gradient grooves. The measurement shows that the DS SSPP lines can exhibit the lower coupling and lower insertion loss than the microstrip lines, so that the former is well-suited for the densely packed high-speed interconnects. The designed DS SSPP is utilized for high quality (Q)-factor microwave ring resonator. The measured unloaded Q-factor is 107.9 at the resonant frequency of 8.7 GHz, which is 1.3 times higher than the microstrip ring resonator. It is found to be caused by the reduction of the radiation loss, according to the loss analysis. The size is also reduced due to the short wavelength, occupying 56.8% of that of the microstrip ring resonator. Therefore, the proposed T-shaped DS SSPP can be also applied for high-performance miniaturized microwave circuits.

Funder

Institute of Information and Communications Technology Planning and Evaluation (IITP) grant funded by Korea government

Sogang University Research Grant 2021

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3