Using CFD simulations to investigate the shear stress in hydrodynamic cavitation reactors coupled with experimental validation using colony count measurements

Author:

Polgár Máté,Agarwal Charu,Gogate Parag,Németh Gábor,Csóka Levente

Abstract

AbstractThe current work investigates the shear stress distribution in hydrodynamic cavitation reactors with two different geometries using CFD simulations. Venturi type (positive geometry) and bore (negative geometry) were used to induce cavitation. Experimental validation of the predictions from simulations was also conducted by calculating the reduction rate in the colony count of Legionella pneumophila, a pathogenic bacterial strain. Both the numerical and experimental studies revealed the significant influence of the shape of the cavitation-inducing geometry on the flow characteristics and the distribution of shear stress. The simulation data indicated high shear stress formation in the positive geometry as a venturi, with the cavitation ranges for the two reactors being far apart from each other. The experimental study also confirmed that the flow conditions in the venturi-type reactor were more favourable compared to the bore geometry, resulting in a bacterial reduction efficiency as high as 99.98%. It was clearly demonstrated that the geometry of the cavitating device plays a crucial role in deciding the shear stress and its efficacy for the desired applications as per the predictions of the simulation model validated by the experimental results.

Funder

Eötvös Loránd University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3