Cerebral aneurysms at major arterial bifurcations are associated with the arterial branch forming a smaller angle with the parent artery

Author:

Gao Bu-Lang,Hao Hong,Hao Weili,Ren Chun-Feng,Yang Lei,Han Yongfeng

Abstract

AbstractCurrently, the relationship of bifurcation morphology and aneurysm presence at the major cerebral bifurcations is not clear. This study was to investigate cerebral arterial bifurcation morphology and accompanied hemodynamic stresses associated with cerebral aneurysm presence at major cerebral arterial bifurcations. Cerebral angiographic data of major cerebral artery bifurcations of 554 anterior cerebral arteries, 582 internal carotid arteries, 793 middle cerebral arteries and 195 basilar arteries were used for measurement of arterial diameter, lateral and bifurcation angles and aneurysm deviation. Hemodynamic stresses were analyzed using computational fluid dynamic simulation. Significantly (P < 0.001) more aneurysms deviated toward the smaller branch and the smaller lateral angle than towards the larger branch and larger lateral angle at all four major bifurcations. At the flow direct impinging center, the total pressure was the greatest while the dynamic pressure, wall shear stress (WSS), vorticity and strain rate were the least. Peak 1 and Peak 2 were located on the branch forming a smaller and larger angle with the parent artery, respectively. The dynamic pressure (175.4 ± 18.6 vs. 89.9 ± 7.6 Pa), WSS (28.9 ± 7.4 vs. 15.7 ± 5.3 Pa), vorticity (9874.6 ± 973.4 vs. 7237.8 ± 372.7 1/S), strain rate (9873.1 ± 625.6 vs. 7648.3 ± 472.5 1/S) and distance (1.9 ± 0.8 vs. 1.3 ± 0.3 mm) between the peak site and direct flow impinging center were significantly greater at Peak 1 than at Peak 2 (P < 0.05 or P < 0.01). Moreover, aneurysms deviation and Peak 1 were always on the same side. In conclusion, the branch forming a smaller angle with the parent artery is associated with abnormally enhanced hemodynamic stresses to initiate an aneurysm at the bifurcation apex.

Funder

Key Program of Medical Science Research in Hebei Province

Hebei Health Department Plan

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3