Author:
Gao Bu-Lang,Hao Hong,Hao Weili,Ren Chun-Feng,Yang Lei,Han Yongfeng
Abstract
AbstractCurrently, the relationship of bifurcation morphology and aneurysm presence at the major cerebral bifurcations is not clear. This study was to investigate cerebral arterial bifurcation morphology and accompanied hemodynamic stresses associated with cerebral aneurysm presence at major cerebral arterial bifurcations. Cerebral angiographic data of major cerebral artery bifurcations of 554 anterior cerebral arteries, 582 internal carotid arteries, 793 middle cerebral arteries and 195 basilar arteries were used for measurement of arterial diameter, lateral and bifurcation angles and aneurysm deviation. Hemodynamic stresses were analyzed using computational fluid dynamic simulation. Significantly (P < 0.001) more aneurysms deviated toward the smaller branch and the smaller lateral angle than towards the larger branch and larger lateral angle at all four major bifurcations. At the flow direct impinging center, the total pressure was the greatest while the dynamic pressure, wall shear stress (WSS), vorticity and strain rate were the least. Peak 1 and Peak 2 were located on the branch forming a smaller and larger angle with the parent artery, respectively. The dynamic pressure (175.4 ± 18.6 vs. 89.9 ± 7.6 Pa), WSS (28.9 ± 7.4 vs. 15.7 ± 5.3 Pa), vorticity (9874.6 ± 973.4 vs. 7237.8 ± 372.7 1/S), strain rate (9873.1 ± 625.6 vs. 7648.3 ± 472.5 1/S) and distance (1.9 ± 0.8 vs. 1.3 ± 0.3 mm) between the peak site and direct flow impinging center were significantly greater at Peak 1 than at Peak 2 (P < 0.05 or P < 0.01). Moreover, aneurysms deviation and Peak 1 were always on the same side. In conclusion, the branch forming a smaller angle with the parent artery is associated with abnormally enhanced hemodynamic stresses to initiate an aneurysm at the bifurcation apex.
Funder
Key Program of Medical Science Research in Hebei Province
Hebei Health Department Plan
Publisher
Springer Science and Business Media LLC
Reference41 articles.
1. Vlak, M. H., Algra, A., Brandenburg, R. & Rinkel, G. J. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: A systematic review and meta-analysis. Lancet Neurol. 10, 626–636 (2011).
2. Brunasso, L., Alotta, G., Zingales, M., Iacopino, D. G. & Graziano, F. Can biomechanical analysis shed some light on aneurysmal pathophysiology? Preliminary study on ex vivo cerebral arterial walls. Clin. Biomech. 81, 105184 (2021).
3. Koseki, H. et al. Two diverse hemodynamic forces, a mechanical stretch and a high wall shear stress, determine intracranial aneurysm formation. Transl. Stroke. Res. 11, 80–92 (2020).
4. Meng, H. et al. Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 38, 1924–1931 (2007).
5. Tanaka, K. et al. Relationship between hemodynamic parameters and cerebral aneurysm initiation. Ann. Int. Conf. IEEE Eng. Med. Biol. Soc. 2018, 1347–1350 (2018).
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献