Fuel, cost, energy efficiency and CO2 emission performance of PCM integrated wood fiber composite phase change material at different climates

Author:

Frahat Nour Bassim,Ustaoglu Abid,Gencel Osman,Sarı Ahmet,Hekimoğlu Gökhan,Yaras Ali,del Coz Díaz Juan José

Abstract

AbstractWood fiber is a great potential supportive material for creating a new composite the phase change materials (PCM) due to its beneficial qualities, including high sorption competency, low density, enviro -friendliness, economic effectiveness, and chemical inertness. The main objective of this paper is to study the effect of using the wood fiber/eutectic mixture of stearic and capric acid on the fuel, cost, and carbon emission-saving potentials for various PCM cases. Which experiences a phase transition within the thermally pleasant temperature range of buildings, used for the building's thermal energy storing purposes and consumption cost saving. The energy performance analysis was carried out for buildings incorporated with stearic and capric acid eutectic mixture of PCM with wood fiber-based insulation material (INS) in different climate regions. The results showed that the largest energy-saving capacity belongs to PCM5. The energy saving reaches 52.7% for PCM5 for a thickness of 0.1 m. The PCM1, PCM2, PCM3, PCM4 can provide energy saving rates of 23.5%, 34.3%, 44.7% and 50.5%, respectively. INS-PCM5 can provide about 1.74-, 1.5-, and 1.33 times larger cost savings than INS in 2nd, 3rd, and 4th regions for all fuels. The payback period varies between 0.37 and 5.81 years regarding the fuel and Region. Finally, the results indicate that the proposed composite provided a promising energy-saving potential in building applications by reducing.

Funder

Suez University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3