The application of deep learning based diagnostic system to cervical squamous intraepithelial lesions recognition in colposcopy images

Author:

Yuan Chunnv,Yao Yeli,Cheng Bei,Cheng Yifan,Li Ying,Li Yang,Liu Xuechen,Cheng Xiaodong,Xie Xing,Wu Jian,Wang Xinyu,Lu Weiguo

Abstract

AbstractBackground Deep learning has presented considerable potential and is gaining more importance in computer assisted diagnosis. As the gold standard for pathologically diagnosing cervical intraepithelial lesions and invasive cervical cancer, colposcopy-guided biopsy faces challenges in improving accuracy and efficiency worldwide, especially in developing countries. To ease the heavy burden of cervical cancer screening, it is urgent to establish a scientific, accurate and efficient method for assisting diagnosis and biopsy. Methods The data were collected to establish three deep-learning-based models. For every case, one saline image, one acetic image, one iodine image and the corresponding clinical information, including age, the results of human papillomavirus testing and cytology, type of transformation zone, and pathologic diagnosis, were collected. The dataset was proportionally divided into three subsets including the training set, the test set and the validation set, at a ratio of 8:1:1. The validation set was used to evaluate model performance. After model establishment, an independent dataset of high-definition images was collected to further evaluate the model performance. In addition, the comparison of diagnostic accuracy between colposcopists and models weas performed. Results The sensitivity, specificity and accuracy of the classification model to differentiate negative cases from positive cases were 85.38%, 82.62% and 84.10% respectively, with an AUC of 0.93. The recall and DICE of the segmentation model to segment suspicious lesions in acetic images were 84.73% and 61.64%, with an average accuracy of 95.59%. Furthermore, 84.67% of high-grade lesions were detected by the acetic detection model. Compared to colposcopists, the diagnostic system performed better in ordinary colposcopy images but slightly unsatisfactory in high-definition images. Implications The deep learning-based diagnostic system could help assist colposcopy diagnosis and biopsy for HSILs.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference43 articles.

1. Bruni LAG, Serrano B, Mena M, Gómez D, Muñoz J, Bosch FX, de Sanjosé S.ICO/IARC Information Centre on HPV and Cancer (HPV Information Centre). Human papillomavirus and related diseases in china. Summary report. 17 June 2019.

2. Goodman A. Hpv testing as a screen for cervical cancer. BMJ, 2015,350(h2372).

3. Jin, J. Hpv infection and cancer. JAMA 319(10), 1058 (2018).

4. Castellsague, X. Natural history and epidemiology of hpv infection and cervical cancer. Gynecol. Oncol. 110(3 Suppl 2), S4-7 (2008).

5. Walboomers, J. M. M. et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J. Pathol. 189, 12–19 (1999).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3