Dislocation response of ECC-RC composite supporting structures of tunnels passing through active fault

Author:

Wang Shunguo,Ding Zude,Shi Chenghua,Cai Haibing,Chen Yusheng,Ding Wenyun,Huang Juan

Abstract

AbstractTo address the problems of the conventional composite supporting structures (CCSSs) such as insufficient anti-dislocation performance and deformation capacity, this study used Engineered Cementitious Composite (ECC) lining sections instead of the traditional lining sections and optimized support design parameters, resulting in the development of novel ECC-RC composite supporting structures (ECSSs) of tunnels passing through active fault. The dislocation response characteristics and their parameter sensitivity of the ECSS was revealed by way of 1/25-scale fault dislocation model tests and finite element analysis. The test results show that the mechanical response characteristics and the failure modes of the CCSS and the ECSS are similar under reverse fault dislocation. Compared with the CCSS, the anti-dislocation performance of the ECSS is significantly improved by introducing of the ECC lining and optimizing the design parameters. The vertical deformation of the ECSS and the range of influence under the same dislocation are significantly decreased, and the strain are reduced to different degrees. This phenomenon shows that by improving the material properties, shortening the spacing of aseismatic joints and optimising the thickness of the shock absorption layer, the stress conditions and applicability under deformation of the structure are improved. The ECSS benefits from the crack resistance and toughening effect of fibres, the degree and scope of cracking of the ECSS are significantly reduced compared with those of the CCSS, and internal and external through cracks and local spalling are absent. The results of finite element analysis show that the overall damage degree of the ECSS is decreased and the damage range is increased by decreasing the strength of the surrounding rock in the fault zone. The fault dislocation response pattern of the ECSS varies depending on the fault type. The damage degree caused by different fault types follows the order of normal fault, strike-slip fault, and reverse fault from large to small. However, the damage range caused by the strike-slip fault is significantly larger compared to normal fault and reverse fault. In the design of fault resistance, the surrounding rock conditions of the fault zone and the form of fault dislocation should be considered.

Funder

National Natural Science Foundation of China

Key Technology R&D Plan of Yunnan Provincial Department of Science and Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3