Performance sensitivity analysis of brain metastasis stereotactic radiosurgery outcome prediction using MRI radiomics

Author:

DeVries David A.,Lagerwaard Frank,Zindler Jaap,Yeung Timothy Pok Chi,Rodrigues George,Hajdok George,Ward Aaron D.

Abstract

AbstractRecent studies have used T1w contrast-enhanced (T1w-CE) magnetic resonance imaging (MRI) radiomic features and machine learning to predict post-stereotactic radiosurgery (SRS) brain metastasis (BM) progression, but have not examined the effects of combining clinical and radiomic features, BM primary cancer, BM volume effects, and using multiple scanner models. To investigate these effects, a dataset of n = 123 BMs from 99 SRS patients with 12 clinical features, 107 pre-treatment T1w-CE radiomic features, and BM progression determined by follow-up MRI was used with a random decision forest model and 250 bootstrapped repetitions. Repeat experiments assessed the relative accuracy across primary cancer sites, BM volume groups, and scanner model pairings. Correction for accuracy imbalances across volume groups was investigated by removing volume-correlated features. We found that using clinical and radiomic features together produced the most accurate model with a bootstrap-corrected area under the receiver operating characteristic curve of 0.77. Accuracy also varied by primary cancer site, BM volume, and scanner model pairings. The effect of BM volume was eliminated by removing features at a volume-correlation coefficient threshold of 0.25. These results show that feature type, primary cancer, volume, and scanner model are all critical factors in the accuracy of radiomics-based prognostic models for BM SRS that must be characterised and controlled for before clinical translation.

Funder

Natural Sciences and Engineering Research Council of Canada

Government of Ontario, Canada

Western University

London Health Sciences Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3