Reduction of hexavalent chromium using bacterial isolates and a microbial community enriched from tannery effluent

Author:

Plestenjak Eva,Kraigher Barbara,Leskovec Simona,Mandic Mulec Ines,Marković Stefan,Ščančar Janez,Milačič Radmila

Abstract

AbstractWe investigated microbial growth in increasing concentrations of hexavalent chromium (Cr(VI)) and its reduction by a microbial community enriched from tannery effluent and by the bacterial strains isolated from the enriched community. The bacterial growth was monitored by measuring the optical cell density (OD650), while the Cr(VI) concentration in the samples was determined using spectrophotometry and liquid chromatography hyphenated to inductively coupled plasma mass spectrometry (HPLC–ICP–MS). At a Cr(VI) concentration of 100 mg/L, the isolates affiliated with Pseudomonas aeruginosa (P. aeruginosa) reached higher optical cell densities, but were in general less effective for Cr(VI) reduction than the isolates affiliated with Mammaliicoccus sciuri (M. sciuri). All three M. sciuri isolates and only one of the seven P. aeruginosa isolates were able to reduce 50% of the Cr(VI) with an initial concentration of 100 mg/L within 24 h (pH 7.1), while the six isolates affiliated with P. aeruginosa were less effective. Compared to the isolated, individual bacterial strains, the enriched microbial community was better adapted to the elevated Cr(VI) concentrations, but needed a longer time (48 h) to reduce the Cr(VI) with the same efficacy as the most efficient individual isolates. The ability of the enriched microbial community and the isolated bacterial strains to reduce the Cr(VI) highlights their potential for use in the rapid bioremediation of wastewaters contaminated with Cr(VI).

Funder

Javna Agencija za Raziskovalno Dejavnost RS

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3