Author:
Müller Philipp L.,Odainic Alexandru,Treis Tim,Herrmann Philipp,Tufail Adnan,Holz Frank G.,Pfau Maximilian
Abstract
AbstractSpatially-resolved retinal function can be measured by psychophysical testing like fundus-controlled perimetry (FCP or ‘microperimetry’). It may serve as a performance outcome measure in emerging interventional clinical trials for macular diseases as requested by regulatory agencies. As FCP constitute laborious examinations, we have evaluated a machine-learning-based approach to predict spatially-resolved retinal function (’inferred sensitivity’) based on microstructural imaging (obtained by spectral domain optical coherence tomography) and patient data in recessive Stargardt disease. Using nested cross-validation, prediction accuracies of (mean absolute error, MAE [95% CI]) 4.74 dB [4.48–4.99] were achieved. After additional inclusion of limited FCP data, the latter reached 3.89 dB [3.67–4.10] comparable to the test–retest MAE estimate of 3.51 dB [3.11–3.91]. Analysis of the permutation importance revealed, that the IS&OS and RPE thickness were the most important features for the prediction of retinal sensitivity. ’Inferred sensitivity’, herein, enables to accurately estimate differential effects of retinal microstructure on spatially-resolved function in Stargardt disease, and might be used as quasi-functional surrogate marker for a refined and time-efficient investigation of possible functionally relevant treatment effects or disease progression.
Funder
Deutsche Forschungsgemeinschaft
National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology
Projekt DEAL
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献