Author:
Ositanwosu Obiajulu Emenike,Huang Qiong,Liang Yun,Nwokoye Chukwunonso H.
Abstract
AbstractThe knowledge of body size/weight is necessary for the general growth enhancement of swine as well as for making informed decisions that concern their health, productivity, and yield. Therefore, this work aims to automate the collection of pigs’ body parameters using images from Kinect V2 cameras, and the development of Multilayer Perceptron Neural Network (MLP NN) models to predict their weight. The dataset obtained using 3D light depth cameras contains 9980 pigs across the S21 and S23 breeds, and then grouped into 70:15:15 training, testing, and validation sets, respectively. Initially, two MLP models were built and evaluations revealed that model 1 outperformed model 2 in predicting pig weights, with root mean squared error (RMSE) values of 5.5 and 6.0 respectively. Moreover, employing a normalized dataset, two new models (3 and 4) were developed and trained. Subsequently, models 2, 3, and 4 performed significantly better with a RMSE value of 5.29 compared to model 1, which has a RMSE value of 6.95. Model 3 produced an intriguing discovery i.e. accurate forecasting of pig weights using just two characteristics, age and abdominal circumference, and other error values show corresponding results
Funder
Guangzhou Key Laboratory of Intelligent Agriculture
R&D project of Guangzhou
The Science and Technology Planning Project of Guangdong Province
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献