VDR alleviates endothelial cell injury in arteriovenous fistula through inhibition of P66Shc-mediated mitochondrial ROS

Author:

Han Ya-chun,Liu Yu-ting,Zhang Hao,Xu Yong,Liu Jun,Chen Hong,Song Na,Qin Dong-lu,Yang Shikun

Abstract

AbstractTo investigate the effects and mechanism of Vitamin D receptor (VDR) signaling on arteriovenous fistula (AVF) endothelial cell injury. Venous tissues of AVF stenosis patients were collected and analyzed, vascular morphology, reactive oxygen species (ROS), and the expression of VDR, P66Shc, fibronectin (FN), collagen-1 (Col-1) were detected. In addition, human umbilical vein endothelial cells (HUVECs) was used in in vitro studies. HUVECs was incubated with transforming growth factor-beta (TGF-β, 50 ng/ml). Aditionally, paricalcitol, VDR overexpression plasmid and Pin1 inhibitor Juglone were used to investigate the regulatory mechanism of VDR in mitochondrial ROS. The parameters of ROS (e.g. MitoSox) and the expression of FN, Col-1 were tested. Moreover, the mitochondrial translocation of P66Shc was analyzed. The expression of VDR was obviously decreased in the venous tissues of AVF stenosis patients. On the contrary, the expression of P66Shc, P-P66Shc, FN, Col-1 and 8-OHdG were increased significantly in the venous tissues of AVF stenosis patients (P < 0.05). In line with this, the level of mitochondrial ROS and the expression of P66Shc, P-P66Shc, FN, Col-1 increased obviously in HUVECs cells under TGF-β condition. Both VDR over-expression plasmid and Pin1 inhibitor Juglone could alleviate TGF-β induced endothelial injury. Mechanistically, VDR overexpression plasmid and Juglone could inhibit the expression of Pin1, and then restrain P66Shc mitochondrial translocation, eventually reduce the level of mitochondrial ROS. Our research indicated that activation of VDR could alleviate venous endothelial cell dysfunction through inhibiting Pin1-mediated mitochondrial translocation of P66Shc and consequently reducing mitochondrial ROS. It suggested that VDR signaling might be an effective target for AVF stenosis treatment.

Funder

the Hunan Provincial Clinical Medical Technology Innovation Guide Project

Natural Science Foundation of Changsha

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3