Application of neural network-based image analysis to detect sister chromatid cohesion defects

Author:

Ikemoto Daiki,Taniguchi Tomoya,Hirota Kouji,Nishikawa Kiyoshi,Okubo Kan,Abe Takuya

Abstract

AbstractSister chromatid cohesion (SCC) is mediated by the cohesin complex and its regulatory proteins. To evaluate the involvement of a protein in cohesin regulation, preparations of metaphase chromosome spreads and classifications of chromosome shapes after depletion of the target protein are commonly employed. Although this is a convenient and approved method, the evaluation and classification of each chromosome shape has to be performed manually by researchers. Therefore, this method is time consuming, and the results might be affected by the subjectivity of researchers. In this study, we developed neural network-based image recognition models to judge the positional relationship of sister chromatids, and thereby detect SCC defects. Transfer learning models based on SqueeezeNet or ResNet-18 were trained with more than 600 chromosome images labeled with the type of chromosome, which were classified according to the positional relationship between sister chromatids. The SqueezeNet-based trained model achieved a concordance rate of 73.1% with the sample answers given by a researcher. Importantly, the model successfully detected the SCC defect in the CTF18 deficient cell line, which was used as an SCC-defective model. These results indicate that neural-network-based image recognition models are valuable tools for examining SCC defects in different genetic backgrounds.

Funder

Japan Society for the Promotion of Science

the Uehara Memorial Foundation

the Mochida Memorial Foundation for Medical and Pharmaceutical Research

the Kanae Foundation for the Promotion of Medical Science

Senri Life Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3