Anti-osteopontin therapy leads to improved edema and infarct size in a murine model of ischemic stroke

Author:

Spitzer Daniel,Puetz Tim,Armbrust Moritz,Dunst Maika,Macas Jadranka,Croll Florian,Plate Karl-Heinz,Reiss Yvonne,Liebner Stefan,Harter Patrick N.,Guérit Sylvaine,Devraj Kavi

Abstract

AbstractIschemic stroke is a serious neurological disorder that is associated with dysregulation of the neurovascular unit (NVU) and impairment of the blood–brain barrier (BBB). Paradoxically, reperfusion therapies can aggravate NVU and BBB dysfunction, leading to deleterious consequences in addition to the obvious benefits. Using the recently established EPAM-ia method, we identified osteopontin as a target dysregulated in multiple NVU cell types and demonstrated that osteopontin targeting in the early acute phase post-transient middle cerebral artery occlusion (tMCAO) evolves protective effects. Here, we assessed the time course of osteopontin and CD44 receptor expression in NVU cells and examined cerebroprotective effects of osteopontin targeting in early and late acute phases of ischemic stroke. Expression analysis of osteopontin and CD44 receptor post-tMCAO indicated increased levels of both, from early to late acute phases, which was supported by their co-localization in NVU cells. Combined osteopontin targeting in early and late acute phases with anti-osteopontin antibody resulted in further improvement in BBB recovery and edema reduction compared to targeting only in the early acute phase comprising the reperfusion window. Combined targeting led to reduced infarct volumes, which was not observed for the single early acute phase targeting. The effects of the therapeutic antibody were confirmed both in vitro and in vivo in reducing osteopontin and CD44 expression. Osteopontin targeting at the NVU in early and late acute phases of ischemic stroke improves edema and infarct size in mice, suggesting anti-osteopontin therapy as promising adjunctive treatment to reperfusion therapy.

Funder

Johann Wolfgang Goethe-Universität, Frankfurt am Main

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3