High-throughput spatial sensitive quantitative phase microscopy using low spatial and high temporal coherent illumination

Author:

Ahmad Azeem,Dubey Vishesh,Jayakumar Nikhil,Habib Anowarul,Butola Ankit,Nystad Mona,Acharya Ganesh,Basnet Purusotam,Mehta Dalip Singh,Ahluwalia Balpreet Singh

Abstract

AbstractHigh space-bandwidth product with high spatial phase sensitivity is indispensable for a single-shot quantitative phase microscopy (QPM) system. It opens avenue for widespread applications of QPM in the field of biomedical imaging. Temporally low coherence light sources are implemented to achieve high spatial phase sensitivity in QPM at the cost of either reduced temporal resolution or smaller field of view (FOV). In addition, such light sources have low photon degeneracy. On the contrary, high temporal coherence light sources like lasers are capable of exploiting the full FOV of the QPM systems at the expense of less spatial phase sensitivity. In the present work, we demonstrated that use of narrowband partially spatially coherent light source also called pseudo-thermal light source (PTLS) in QPM overcomes the limitations of conventional light sources. The performance of PTLS is compared with conventional light sources in terms of space bandwidth product, phase sensitivity and optical imaging quality. The capabilities of PTLS are demonstrated on both amplitude (USAF resolution chart) and phase (thin optical waveguide, height ~ 8 nm) objects. The spatial phase sensitivity of QPM using PTLS is measured to be equivalent to that for white light source and supports the FOV (18 times more) equivalent to that of laser light source. The high-speed capabilities of PTLS based QPM is demonstrated by imaging live sperm cells that is limited by the camera speed and large FOV is demonstrated by imaging histopathology human placenta tissue samples. Minimal invasive, high-throughput, spatially sensitive and single-shot QPM based on PTLS will enable wider penetration of QPM in life sciences and clinical applications.

Funder

Norges Forskningsråd

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3