Genome analysis of deep sea piezotolerant Nesiotobacter exalbescens COD22 and toluene degradation studies under high pressure condition

Author:

Ganesh Kumar A.,Mathew Noelin Chinnu,Sujitha K.,Kirubagaran R.,Dharani G.

Abstract

AbstractA marine isolate, Nesiotobacter exalbescens COD22, isolated from deep sea sediment (2100 m depth) was capable of degrading aromatic hydrocarbons. The Nesiotobacter sp. grew well in the presence of toluene at 0.1 MPa and 10 MPa at a rate of 0.24 h−1 and 0.12 h−1, respectively, in custom designed high pressure reactors. Percentage of hydrocarbon degradation was found to be 87.5% at ambient pressure and it reached 92% under high pressure condition within a short retention period of 72 h. The biodegradation of hydrocarbon was confirmed by the accumulation of dicarboxylic acid, benzoic acid, benzyl alcohol and benzaldehyde which are key intermediates in toluene catabolism. The complete genome sequence consists of 4,285,402 bp with 53% GC content and contained 3969 total coding genes. The complete genome analysis revealed unique adaptation and degradation capabilities for complex aromatic compounds, biosurfactant synthesis to facilitate hydrocarbon emulsification, advanced mechanisms for chemotaxis and presence of well developed flagellar assembly. The genomic data corroborated with the results of hydrocarbon biodegradation at high pressure growth conditions and confirmed the biotechnological potential of Nesiotobacter sp. towards bioremediation of hydrocarbon polluted deep sea environments.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3