Utilization of synthesized silane-based silica Janus nanoparticles to improve foam stability applicable in oil production: static study

Author:

Saeedi Dehaghani Amir Hossein,Gharibshahi Reza,Mohammadi Mohammad

Abstract

AbstractThis study investigated the effect of silane-based silica (SiO2) Janus nanoparticles (JNPs) on stabilizing the foam generated by different types of gases. Two types of SiO2 JNPs were synthesized through surface modification using HMDS and APTS silane compounds. Static analyses were conducted to examine the impact of different concentrations of the synthesized nanoparticles in various atmospheres (air, CO2, and CH4) on surface tension, foamability, and foam stability. The results indicated that the synthesized SiO2 JNPs and bare SiO2 nanoparticles exhibited nearly the same ability to reduce surface tension at ambient temperature and pressure. Both of these nanoparticles reduced the surface tension from 71 to 58–59 mN m−1 at 15,000 ppm and 25 °C. While bare SiO2 nanoparticles exhibited no foamability, the synthesis of SiO2 JNPs significantly enhanced their ability to generate and stabilize gas foam. The foamability of HMDS-SiO2 JNPs started at a higher concentration than APTS-SiO2 JNPs (6000 ppm compared to 4000 ppm, respectively). The type of gas atmosphere played a crucial role in the efficiency of the synthesized JNPs. In a CH4 medium, the foamability of synthesized JNPs was superior to that in air and CO2. At a concentration of 1500 ppm in a CH4 medium, HMDS-SiO2 and APTS-SiO2 JNPs could stabilize the generated foam for 36 and 12 min, respectively. Due to the very low dissolution of CO2 gas in water at ambient pressure, the potential of synthesized JNPs decreased in this medium. Finally, it was found that HMDS-SiO2 JNPs exhibited better foamability and foam stability in all gas mediums compared to APTS-SiO2 JNPs for use in oil reservoirs. Also, the optimal performance of these JNPs was observed at a concentration of 15,000 ppm in a methane gas medium.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3