Author:
Zeng Qinghong,Chen Shengbo,Zhang Yuanzhi,Mu Yongling,Dai Rui,Yang Congyu,Li Anzhen,Lu Peng
Abstract
AbstractWe report on the mineralogical and chemical properties of materials investigated by the lunar rover Yutu-2, which landed on the Von Kármán crater in the pre-Nectarian South Pole–Aitken (SPA) basin. Yutu-2 carried several scientific payloads, including the Visible and Near-infrared Imaging Spectrometer (VNIS), which is used for mineral identification, offering insights into lunar evolution. We used 86 valid VNIS data for 21 lunar days, with mineral abundance obtained using the Hapke radiative transfer model and sparse unmixing algorithm and chemical compositions empirically estimated. The mineralogical properties of the materials at the Chang’E-4 (CE-4) site referred to as norite/gabbro, based on findings of mineral abundance, indicate that they may be SPA impact melt components excavated by a surrounding impact crater. We find that CE-4 materials are dominated by plagioclase and pyroxene and feature little olivine, with 50 of 86 observations showing higher LCP than HCP in pyroxene. In view of the effects of space weathering, olivine content may be underestimated, with FeO and TiO2 content estimated using the maturity-corrected method. Estimates of chemical content are 7.42–18.82 wt% FeO and 1.48–2.1 wt% TiO2, with a low-medium Mg number (Mg # ~ 55). Olivine-rich materials are not present at the CE-4 landing site, based on the low-medium Mg #. Multi-origin materials at the CE-4 landing site were analyzed with regard to concentrations of FeO and TiO2 content, supporting our conclusion that the materials at CE-4 do not have a single source but rather are likely a mixture of SPA impact melt components excavated by surrounding impact crater and volcanic product ejecta.
Funder
Strategic Priority Research Program of Chinese Academy of Sciences
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference57 articles.
1. Li, C. L. et al. Detection and calibration characteristics of the visible and near-infrared imaging spectrometer in the Chang’E-4. Rev. Sci. Instrum. 90(10), 103–106 (2019).
2. Chen, J. et al. Mineralogy of Chang’E-4 landing site: Preliminary results of visible and near-infrared imaging spectrometer. Sci. China Inform. Sci. 63(4), 1869–1919 (2020).
3. Li, C. L. et al. Chang’E-4 initial spectroscopic identification of lunar far-side mantle-derived materials. Nature 569(7756), 378–382 (2019).
4. Gou, S. et al. Forsteritic olivine and magnesium-rich orthopyroxene materials measured by Chang’E-4 rover. Icarus 345, 113776 (2020).
5. Moriarty, D. P. & Pieters, C. M. The character of South Pole-Aitken Basin: Patterns of surface and subsurface composition. J. Geophys. Res. Planet 123(3), 729–747 (2018).
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献