Study on pore structure and the mechanical properties of sandstone-concrete binary under freeze–thaw environment

Author:

Hu Anlong,Xue Guobin,Shang Zhipeng,Cao Zhe,Wang Xiaoping,Fu Yintao,Huang Xiaoqing

Abstract

AbstractIn China's cold region water conservancy and hydropower projects, the contact interface between the dam and the reservoir bank rock is prone to cracking under external loading and freeze–thaw action, which may lead to dam-bank failure and damage and cause engineering disasters. The NMR (Nuclear Magnetic Resonance) tests and uniaxial compression tests of concrete, sandstone, and sandstone-concrete composite after different numbers of freeze–thaw cycles were carried out to analyze the pore structure development and uniaxial compression mechanical properties of the three types of specimens under different numbers of freeze–thaw cycles. The results show that freeze–thaw cycling promotes the development of pores in sandstone and concrete, and sandstone is more sensitive to low-temperature freeze–thaw than concrete. The UCS (uniaxial compressive strength) of the sandstone-concrete binary changed in a V-shaped with the increase of the dip angle of the cemented interface, and the angle had no obvious effect on the microscopic pores. The freeze–thaw effect on the deterioration of the microscopic pore structure and mechanical properties of the sandstone-concrete binary has a similar effect pattern, in which the deterioration rate of porosity and compressive strength is faster in the early freeze–thaw period, slower in the middle period, and increases in the later period compared with the middle period, but the increase is smaller than that in the early period of freeze–thaw. In addition, the relationship between the porosity and UCS of the sandstone-concrete binary under the freeze–thaw cycle environment is a quadratic parabola.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3