Transcriptomic analysis of female and male gonads in juvenile snakeskin gourami (Trichopodus pectoralis)

Author:

Boonanuntanasarn Surintorn,Jangprai Araya,Na-Nakorn Uthairat

Abstract

AbstractThe snakeskin gourami (Trichopodus pectoralis) exhibits sexual dimorphism, particularly in body size. Since the snakeskin gourami is usually marketed during sexual maturation, the sexual size dimorphism has become an economically important trait. Sex-biased gene expression plays a key role in phenotypic sexual dimorphism. Therefore, using high-throughput RNA sequencing (RNA-seq) technology, we aimed to explore the differentially expressed genes (DEGs) in ovary and testis during sex differentiation in juvenile snakeskin gourami. Our results revealed a number of DEGs were demonstrated to be overexpressed in ovary (11,625 unigenes) and testis (16,120 unigenes), and the top 10 female-biased (rdh7, dnajc25, ap1s3, zp4, polb, parp12, trim39, gucy2g, rtbs, and fdxr) and male-biased (vamp3, nbl1, dnah2, ccdc11, nr2e3, spats1, pih1d2, tekt3, fbxo36, and mybl2) DEGs were suggested to be mainly associated with ovary and testis differentiation, respectively. Additionally, using real-time reverse transcription polymerase chain reaction (qRT-PCR), validation of the differential expression of 21 genes that were previously shown to be related to gonad development was performed (ar, bHLH, cyp19a1, daz, dead-end, esrb, esrrg, gnrhr, gpa, gsg1l, hsd17B, mospd1, nanos-1, nanos-2, p53, piwi-1, piwi-2, rerg, rps6ka, tgf-beta, and VgR). The results showed a significantly positive correlation (0.84; P < 0.001) between the results of RNA-seq and qRT-PCR. Therefore, RNA-seq analysis in our study identified global genes that were associated with ovary and testis differentiation in the juvenile phase of the snakeskin gourami. Our findings provide valuable transcriptomic bioinformation for further investigation of reproductive biology and applications of sex manipulation.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3