Molecular modeling study on the water-electrode surface interaction in hydrovoltaic energy

Author:

Serdaroğlu Goncagül,Kariper İ. Afşin,Kariper S. Esra Bolsu

Abstract

AbstractThe global energy problem caused by the decrease in fossil fuel sources, which have negative effects on human health and the environment, has made it necessary to research alternative energy sources. Renewable energy sources are more advantageous than fossil fuels because they are unlimited in quantity, do not cause great harm to the environment, are safe, and create economic value by reducing foreign dependency because they are obtained from natural resources. With nanotechnology, which enables the development of different technologies to meet energy needs, low-cost and environmentally friendly systems with high energy conversion efficiency are developed. Renewable energy production studies have focused on the development of hydrovoltaic technologies, in which electrical energy is produced by making use of the evaporation of natural water, which is the most abundant in the world. By using nanomaterials such as graphene, carbon nanoparticles, carbon nanotubes, and conductive polymers, hydrovoltaic technology provides systems with high energy conversion performance and low cost, which can directly convert the thermal energy resulting from the evaporation of water into electrical energy. The effect of the presence of water on the generation of energy via the interactions between the ion(s) and the liquid–solid surface can be enlightened by the mechanism of the hydovoltaic effect. Here, we simply try to get some tricky information underlying the hydrovoltaic effect by using DFT/B3LYP/6-311G(d, p) computations. Namely, the physicochemical and electronic properties of the graphene surface with a water molecule were investigated, and how/how much these quantities (or parameters) changed in case of the water molecule contained an equal number of charges were analyzed. In these computations, an excess of both positive charge and negative charge, and also a neutral environment was considered by using the Na+, Cl, and NaCl salt, respectively.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3