Gut mucosa dissociation protocols influence cell type proportions and single-cell gene expression levels

Author:

Uniken Venema Werna T. C.ORCID,Ramírez-Sánchez Aarón D.,Bigaeva Emilia,Withoff Sebo,Jonkers IrisORCID,McIntyre Rebecca E.,Ghouraba MennatallahORCID,Raine Tim,Weersma Rinse K.,Franke Lude,Festen Eleonora A. M.,van der Wijst Monique G. P.ORCID

Abstract

AbstractSingle-cell RNA sequencing (scRNA-seq) has revolutionized the study of the cellular landscape of organs. Most single-cell protocols require fresh material, which limits sample size per experiment, and consequently, introduces batch effects. This is especially true for samples acquired through complex medical procedures, such as intestinal mucosal biopsies. Moreover, the tissue dissociation procedure required for obtaining single cells is a major source of noise; different dissociation procedures applied to different compartments of the tissue induce artificial gene expression differences between cell subsets. To overcome these challenges, we have developed a one-step dissociation protocol and demonstrated its use on cryopreserved gut mucosal biopsies. Using flow cytometry and scRNA-seq analysis, we compared this one-step dissociation protocol with the current gold standard, two-step collagenase digestion, and an adaptation of a recently published alternative, three-step cold-active Bacillus licheniformus protease digestion. Both cell viability and cell type composition were comparable between the one-step and two-step collagenase dissociation, with the former being more time-efficient. The cold protease digestion resulted in equal cell viability, but better preserves the epithelial cell types. Consequently, to analyze the rarer cell types, such as glial cells, larger total biopsy cell numbers are required as input material. The multi-step protocols affected cell types spanning multiple compartments differently. In summary, we show that cryopreserved gut mucosal biopsies can be used to overcome the logistical challenges and batch effects in large scRNA-seq studies. Furthermore, we demonstrate that using cryopreserved biopsies digested using a one-step collagenase protocol enables large-scale scRNA-seq, FACS, organoid generation and intraepithelial lymphocyte expansion.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3