Dynamic response of deepwater test string under fluctuations in axial force and internal pressure

Author:

Sun Qiaolei,Liu Yuwei,Deng Long,Wang Jiangang,Feng Ding

Abstract

AbstractIn this study, a mechanical model suitable for deepwater test string was proposed. An analysis of the dynamic response of the test string under different frequencies, different water depths and different fluctuation amplitudes was carried out by using the finite element method based on the change in the internal pressure and axial force measured. The results of the analysis showed that the response parameters (maximum stress and maximum deformation) tended to be stable after one period of fluctuation in the axial force and half a period of fluctuation in the internal pressure, respectively. When a sine waveform fluctuation in the internal pressure and axial force occurred, the response parameters increased with an increase in the amplitude of the fluctuation and increased with an increase in the frequency of fluctuation, and the amplitude of variation decreased with an increase in the fluctuation period. Under fluctuation in the axial force, the response parameter decreased with an increase in the water depth. The response parameter decreased first and then increased with an increase in the water depth when the fluctuation in the internal pressure occurred with a sine waveform. The maximum deformation and stress of the test string always changed with a change in the load when the fluctuation in the internal pressure and axial force had a sine waveform, and the test string under a load with a sine waveform was prone to periodic fatigue failure. The relevant conclusions provide a basis for the analysis and prevention of fatigue failure in test strings.

Funder

Natural Science Foundation of Hubei Province

Open Fund of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)

National Science and Technology Major Project of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3