A current reference-enhanced strategy endows the GFC in DC microgrids better dynamic response

Author:

Xie Wenqiang,Zheng Xian,Shi Mingming,Jia Jiaoxin

Abstract

AbstractThe constant voltage strategy (CVS) is more suitable for the small-capacity dc microgrid applications to form the dc bus voltage because it can eliminate the steady voltage deviation. However, its dynamic performance is slowed down by the integrator in the voltage loop and negatively influenced by the load steps. Some advanced methods have been conducted in the literature. However, their principle is to increase the system bandwidth, which is limited because the bandwidth is generally designed about one-tenth of the switching frequency and cannot be increased infinitely. This work pays efforts to increase the gain within the system bandwidth to accelerate the transient response and simultaneously eliminate the influence of the integrator. Therefore, the non-integrator disturbance observer-based (NIDOB) strategy is proposed in this work, and it can feed the load current into the current reference to replace the output of the integrator. Compared to the traditional and non-integrator directly-feedforward (NIDF) strategy, it has a better dynamic performance. Compared to the bandwidth-increased strategy, it does not introduce more noise. The theoretical analysis and experimental results prove its advantages.

Funder

Natural Science Foundation of Jiangsu Province, China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3