Modified Ziziphus spina-christi stones as green route for the removal of heavy metals

Author:

Assirey Eman A.,Sirry Shadia M.,Burkani Hayfaa A.,Ibrahim Medhat A.

Abstract

AbstractGreen routes for remediation of heavy metals are worldwide challenges to overcome pollution problems on one hand and control the adverse impact of chemicals on the other hand. Biosorption is one of the most effective methods for removing lower level of heavy metals. The idea to apply natural resources as a green method for removal of heavy metals, this route has no adverse impacts on the environment. This study investigated the ability of chemically modified Ziziphus spina-christi stones (ZSCs) as agriculture by-products to perform the biosorption of Pb(II), Zn(II) and Cd(II) ions from wastewater in a single and ternary metal system. The characteristic functional groups of chemically modified ZSCs were analyzed by Fourier transform infrared. In comparison with acidic ZSCs, alkali-modified ZSCs by KOH was more effective and enhanced the removal efficiency of ZSCs. Using Langmuir isotherm, the maximum adsorption capacity on the modified ZSCs for Pb(II) was 9.06 mg/g, for Zn(II) obtained by using ZSC–citric acid was 4.19 mg/g and 5.38 mg/g for Cd(II) as obtained by using ZSC–H2O2. The molecular electrostatic potential, which was calculated at B3LYP/6-31G(d,p), indicated that each metal is di-hydrated, forming a complex with two units of amino acids. This mechanism demonstrated the uptake process by ZSCs.

Funder

King Abdulaziz City of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3