Author:
Abrari Masoud,Ghanaatshoar Majid,Malvajerdi Shahab Sharifi,Gholamhosseini Saeb,Hosseini Alireza,Sun Haiding,Mohseni Seyed Majid
Abstract
AbstractDelafossite semiconductors have attracted substantial attention in the field of electro-optics owing to their unique properties and availability of p-type materials that are applicable for solar cells, photocatalysts, photodetectors (PDs) and p-type transparent conductive oxides (TCOs). The CuGaO2 (CGO), as one of the most promising p-type delafossite materials, has appealing electrical and optical properties. In this work, we are able to synthesize CGO with different phases by adopting solid-state reaction route using sputtering followed by heat treatment at different temperatures. By examining the structural properties of CGO thin films, we found that the pure delafossite phase appears at the annealing temperature of 900 °C. While at lower temperatures, delafossite phase can be observed, but along with spinel phase. Furthermore, their structural and physical characterizations indicate an improvement of material-quality at temperatures higher than 600 °C. Thereafter, we fabricated a CGO-based ultraviolet-PD (UV-PD) with a metal–semiconductor-metal (MSM) configuration which exhibits a remarkable performance compared to the other CGO-based UV-PDs and have also investigated the effect of metal contacts on the device performance. We demonstrate that UV-PD with the employment of Cu as the electrical contact shows a Schottky behavior with a responsivity of 29 mA/W with a short response time of 1.8 and 5.9 s for rise and decay times, respectively. In contrast, the UV-PD with Ag electrode has shown an improved responsivity of about 85 mA/W with a slower rise/decay time of 12.2/12.8 s. Our work sheds light on the development of p-type delafossite semiconductor for possible optoelectronics application of the future.
Funder
Iran National Science Foundation
National Natural Science Foundation of China
Chinese academy of science
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献