Author:
Li Quan,Peng Changhui,Zhang Junbo,Li Yongfu,Song Xinzhang
Abstract
AbstractForest soils play an important role in controlling global warming by reducing atmospheric methane (CH4) concentrations. However, little attention has been paid to how nitrogen (N) deposition may alter microorganism communities that are related to the CH4 cycle or CH4 oxidation in subtropical forest soils. We investigated the effects of N addition (0, 30, 60, or 90 kg N ha−1 yr−1) on soil CH4 flux and methanotroph and methanogen abundance, diversity, and community structure in a Moso bamboo (Phyllostachys edulis) forest in subtropical China. N addition significantly increased methanogen abundance but reduced both methanotroph and methanogen diversity. Methanotroph and methanogen community structures under the N deposition treatments were significantly different from those of the control. In N deposition treatments, the relative abundance of Methanoculleus was significantly lower than that in the control. Soil pH was the key factor regulating the changes in methanotroph and methanogen diversity and community structure. The CH4 emission rate increased with N addition and was negatively correlated with both methanotroph and methanogen diversity but positively correlated with methanogen abundance. Overall, our results suggested that N deposition can suppress CH4 uptake by altering methanotroph and methanogen abundance, diversity, and community structure in subtropical Moso bamboo forest soils.
Funder
Natural Sciences and Engineering Research Council of Canada
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Reference103 articles.
1. Ni, X. & Groffman, P. M. Declines in methane uptake in forest soils. Proc. Natl. Acad. Sci. USA 115, 8587–8590 (2018).
2. IPCC. Climate change 2013: the physical science basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).
3. Kirschke, S. et al. Three decades of global methane sources and sinks. Nat. Geosci. 6, 813–823 (2013).
4. Turner, A. J., Frankenberg, C. & Kort, E. A. Interpreting contemporary trends in atmospheric methane. Proc. Natl. Acad. Sci. USA 116, 2805–2813 (2019).
5. Tate, K. R. Soil methane oxidation and land-use change–from process to mitigation. Soil Biol. Biochem. 80, 260–272 (2015).
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献