Efficient ship noise classification with positive incentive noise and fused features using a simple convolutional network

Author:

Lin Xu,Dong Ruichun,Zhao Yuqing,Wang Rui

Abstract

AbstractShip noise analysis is a critical area of research in hydroacoustic remote sensing due to its practical implications in identifying ship direction, type, and even specific ship identities. However, the limited availability of data poses challenges in developing accurate ship noise classification models. Previous studies have mainly focused on small-sample learning approaches, resulting in complex network structures. Nonetheless, underwater robots often have limited computing power, making it essential to develop simpler recognition networks. In this paper, we address the issue of data scarcity by introducing positive incentive noise. We propose a CNN-based hydroacoustic signal recognition method that achieves comparable or superior performance to previous studies, using a simple network structure as a back-end decision system. We describe the feature extraction process using a dataset with added noise and compare the performance of various features. Additionally, we compare our proposed method with previous studies. Experimental results demonstrate that simple neural networks can achieve high performance and excellent generalizability without the need for complex network structures like adversarial learning models.

Funder

Shandong Province “Double-Hundred” Talent Plan

Key R&D programs

the Open project of the State Key Laboratory of Sound Field Acoustic Information

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3