Author:
He Qiang,Li Xinkai,Cai Biao
Abstract
AbstractIn this era of information explosion, recommendation systems play a key role in helping users to uncover content of interest among massive amounts of information. Pursuing a breadth of recall while maintaining accuracy is a core challenge for current recommendation systems. In this paper, we propose a new recommendation algorithm model, the interactive higher-order dual tower (IHDT), which improves current models by adding interactivity and higher-order feature learning between the dual tower neural networks. A heterogeneous graph is constructed containing different types of nodes, such as users, items, and attributes, extracting richer feature representations through meta-paths. To achieve feature interaction, an interactive learning mechanism is introduced to inject relevant features between the user and project towers. Additionally, this method utilizes graph convolutional networks for higher-order feature learning, pooling the node embeddings of the twin towers to obtain enhanced end-user and item representations. IHDT was evaluated on the MovieLens dataset and outperformed multiple baseline methods. Ablation experiments verified the contribution of interactive learning and high-order GCN components.
Funder
National Natural Science Foundation of China
Digital Media Science Innovation Team of CDUT
Yibin campus major construction and educational reform of CDUT
Publisher
Springer Science and Business Media LLC