Multi-scale coupled attention for visual object detection

Author:

Li Fei,Yan Hongping,Shi Linsu

Abstract

AbstractThe application of deep neural network has achieved remarkable success in object detection. However, the network structures should be still evolved consistently and tuned finely to acquire better performance. This gears to the continuous demands on high performance in those complex scenes, where multi-scale objects to be detected are located here and there. To this end, this paper proposes a network structure called Multi-Scale Coupled Attention (MSCA) under the framework of self-attention learning with methodologies of importance assessment. Architecturally, it consists of a Multi-Scale Coupled Channel Attention (MSCCA) module, and a Multi-Scale Coupled Spatial Attention (MSCSA) module. Specifically, the MSCCA module is developed to achieve the goal of self-attention learning linearly on the multi-scale channels. In parallel, the MSCSA module is constructed to achieve this goal nonlinearly on the multi-scale spatial grids. The MSCCA and MSSCA modules can be connected together into a sequence, which can be used as a plugin to develop end-to-end learning models for object detection. Finally, our proposed network is compared on two public datasets with 13 classical or state-of-the-art models, including the Faster R-CNN, Cascade R-CNN, RetinaNet, SSD, PP-YOLO, YOLO v3, YOLO v5, YOLO v7, YOLOX, DETR, conditional DETR, UP-DETR and FP-DETR. Comparative experimental results with numerical scores, the ablation study, and the performance behaviour all demonstrate the effectiveness of our proposed model.

Publisher

Springer Science and Business Media LLC

Reference62 articles.

1. Viola, P. A., & Jones, M. J. Rapid object detection using a boosted cascade of simple features. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition 511–518 (2001).

2. Viola, P. A., & Jones, M. J. Robust real-time face detection. In IEEE International Conference on Computer Vision 137–154 (2001).

3. Dalal, N., & Triggs, B. Histograms of oriented gradients for human detection. In IEEE/CVF International Conference on Computer Vision and Pattern Recognition 886–893 (2005).

4. Felzenszwalb, P. F., Mcallester, D. A., & Ramanan, D. A discriminatively trained, multiscale, deformable part model. In IEEE/CVF International Conference on Computer Vision and Pattern Recognition 1–8 (2008).

5. Felzenszwalb, P. F., Girshick, R. B., & Mcallester, D. A.: Cascade object detection with deformable part models. In IEEE/CVF International Conference on Computer Vision and Pattern Recognition 2241–2248 (2010).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3