Complete analytic solutions for convection-diffusion-reaction-source equations without using an inverse Laplace transform

Author:

Kim Albert S.ORCID

Abstract

AbstractTransient mass-transfer phenomena occurring in natural and engineered systems consist of convection, diffusion, and reaction processes. The coupled phenomena can be described by using the unsteady convection-diffusion-reaction (CDR) equation, which is classified in mathematics as a linear, parabolic partial-differential equation. The availability of analytic solutions is limited to simple cases, e.g., unsteady diffusion and steady convective diffusion. The CDR equation has been considered analytically intractable, depending on the initial and boundary conditions. If spatial adsorption and desorption of matter are super-positioned in the CDR equation as sink and source functions, respectively, then the governing equation becomes an unsteady convection-diffusion-reaction-source (CDRS) equation, of which general solutions are unknown. In this study, a general 1D analytic solution of the CDRS equation is obtained by using a one-sided Laplace transform, by assuming constant diffusivity, velocity, and reactivity. This paper also provides a general formalism to derive 1D analytic solutions for Dirichlet/Dirichlet and Dirichlet/Neumann boundary conditions. Derivations of the analytic solutions are found to be straightforward if a combination of the source function and the initial concentration provide a non-zero singularity pole of inverse Laplace transform.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3