Identification of a visualized web-based nomogram for overall survival prediction in patients with limited stage small cell lung cancer

Author:

Liang Min,Chen Mafeng,Singh Shantanu,Singh Shivank

Abstract

AbstractSmall-cell lung cancer (SCLC) is an aggressive lung cancer subtype with an extremely poor prognosis. The 5-year survival rate for limited-stage (LS)-SCLC cancer is 10–13%, while the rate for extensive-stage SCLC cancer is only 1–2%. Given the crucial role of the tumor stage in the disease course, a well-constructed prognostic model is warranted for patients with LS-SCLC. The LS-SCLC patients' clinical data extracted from the Surveillance, Epidemiology, and End Results (SEER) database between 2000 and 2018 were reviewed. A multivariable Cox regression approach was utilized to identify and integrate significant prognostic factors. Bootstrap resampling was used to validate the model internally. The Area Under Curve (AUC) and calibration curve evaluated the model's performance. A total of 5463 LS-SCLC patients' clinical data was collected from the database. Eight clinical parameters were identified as significant prognostic factors for LS-SCLC patients' OS. The predictive model achieved satisfactory discrimination capacity, with 1-, 2-, and 3-year AUC values of 0.91, 0.88, and 0.87 in the training cohort; and 0.87, 0.87, and 0.85 in the validation cohort. The calibration curve showed a good agreement with actual observations in survival rate probability. Further, substantial differences between survival curves of the different risk groups stratified by prognostic scores were observed. The nomogram was then deployed into a website server for ease of access. This study developed a nomogram and a web-based predictor for predicting the overall survival of patients with LS-SCLC, which may help physicians make personalized clinical decisions and treatment strategies.

Funder

the High-level Hospital Construction Project of Maoming People's Hospital

the Medical Research Fund of Guangdong Province

the Research Project of Maoming Science and Technology Bureau

the Outstanding Young Talents Program of Maoming People's hospital

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3