DNA-influenced automated behavior detection on twitter through relative entropy

Author:

Gilmary RosarioORCID,Venkatesan Akila,Vaiyapuri Govindasamy,Balamurali Deepikashini

Abstract

AbstractTwitter is a renowned microblogging site that allows users to interact using tweets and it has almost reached 206 million daily active users by the second quarter of 2021. The ratio of Twitter bots has risen in tandem with their popularity. Bot detection is critical for combating misinformation and protecting the credibility of online disclosures. Current bot detection approaches rely on the Twitosphere’s topological structure, ignoring the heterogeneity among the profiles. Moreover, most techniques incorporate supervised learning, which depends strongly on large-scale training sets. Therefore, to overcome these issues, we proposed a novel entropy-based framework to detect correlated bots leveraging only user behavior. Specifically, real-time data of users is collected and their online behaviors are modeled as DNA sequences. We then determine the probability distribution of DNA sequences and compute relative entropy to evaluate the distance between the distributions. Accounts with entropy values less than a fixed threshold represent bots. Extensive experiments conducted in real-time Twitter data prove that the proposed detection technique outperforms state-of-the-art approaches with precision = 0.9471, recall = 0.9682, F1 score = 0.9511, and accuracy = 0.9457.

Funder

Science and Engineering Research Board

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancing Fake Profile Detection: A Machine Learning Perspective;2023 4th International Conference on Intelligent Technologies (CONIT);2024-06-21

2. Entropy-Based Automation Detection on Twitter Using DNA Profiling;SN Computer Science;2023-11-04

3. A language framework for modeling social media account behavior;EPJ Data Science;2023-08-23

4. From Online Behaviours to Images: A Novel Approach to Social Bot Detection;Computational Science – ICCS 2023;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3