Reappraisal of clinical trauma trials: the critical impact of anthropometric parameters on fracture gap micro-mechanics—observations from a simulation-based study

Author:

Roland Michael,Diebels Stefan,Orth Marcel,Pohlemann Tim,Bouillon Bertil,Tjardes Thorsten

Abstract

AbstractThe evidence base of surgical fracture care is extremely sparse with only few sound RCTs available. It is hypothesized that anthropometric factors relevantly influence mechanical conditions in the fracture gap, thereby interfering with the mechanoinduction of fracture healing. Development of a finite element model of a tibia fracture, which is the basis of an in silico population (n = 300) by systematic variation of anthropometric parameters. Simulations of the stance phase and correlation between anthropometric parameters and the mechanical stimulus in the fracture gap. Analysis of the influence of anthropometric parameters on statistical dispersion between in silico trial cohorts with respect to the probability to generate two, with respect to anthropometric parameters statistically different trial cohorts, given the same power assumptions. The mechanical impact in the fracture gap correlates with anthropometric parameters; confirming the hypothesis that anthropometric factors are a relevant entity. On a cohort level simulation of a fracture trial showed that given an adequate power the principle of randomization successfully levels out the impact of anthropometric factors. From a clinical perspective these group sizes are difficult to achieve, especially when considering that the trials takes advantage of a „laboratory approach “, i.e. the fracture type has not been varied, such that in real world trials the cohort size have to be even larger to level out the different configurations of fractures gaps. Anthropometric parameters have a significant impact on the fracture gap mechanics. The cohort sizes necessary to level out this effect are difficult or unrealistic to achieve in RCTs, which is the reason for sparse evidence in orthotrauma. New approaches to clinical trials taking advantage of modelling and simulation techniques need to be developed and explored.

Funder

AO Foundation

Universität des Saarlandes

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3