RSM integrated GWO, Driving Training, and Election-Based Algorithms for optimising ethylic biodiesel from ternary oil of neem, animal fat, and jatropha

Author:

Samuel Olusegun D.,Patel G. C. Manjunath,Thomas Likewin,Chandran Davannendran,Paramasivam Prabhu,Enweremadu Christopher C.

Abstract

AbstractThe worldwide exploration of the ethanolysis protocol (EP) has decreased despite the multifaceted benefits of ethanol, such as lower toxicity, higher oxygen content, higher renewability, and fewer emission tail compared to methanol, and the enhanced fuel properties with improved engine characteristics of multiple-oily feedstocks (MOFs) compared to single-oily feedstocks. The study first proposed a strategy for the optimisation of ethylic biodiesel synthesis from MOFs: neem, animal fat, and jatropha oil (NFJO) on a batch reactor. The project's goals were to ensure environmental benignity and encourage the use of totally biobased products. This was made possible by the introduction of novel population based algorithms such as Driving Training-Based Optimization (DTBO) and Election-Based Optimization (EBOA), which were compared with the widely used Grey Wolf Optimizer (GWO) combined with Response Surface Methodology (RSM). The yield of NFJO ethyl ester (NFJOEE) was predicted using the RSM technique, and the ideal transesterification conditions were determined using the DTBO, EBOA, and GWO algorithms. Reaction time showed a strong linear relationship with ethylic biodiesel yield, while ethanol-to-NFJO molar ratio, catalyst dosage, and reaction temperature showed nonlinear effects. Reaction time was the most significant contributor to NFJOEE yield.The important fundamental characteristics of the fuel categories were investigated using the ASTM test procedures. The maximum NFJOEE yield (86.3%) was obtained at an ethanol/NFJO molar ratio of 5.99, KOH content of 0.915 wt.%, ethylic duration of 67.43 min, and reaction temperature of 61.55 °C. EBOA outperforms DTBO and GWO regarding iteration and computation time, converging towards a global fitness value equal to 7 for 4 s, 20 for 5 s and 985 for 34 s. The key fuel properties conformed to the standards outlined by ASTMD6751 and EN 14,214 specifications. The NFJOEE fuel processing cost is 0.9328 USD, and is comparatively lesser than that of conventional diesel. The new postulated population based algorithm models can be a prospective approach for enhancing biodiesel production from numerous MOFs and ensuring a balanced ecosystem and fulfilling enviromental benignity when adopted.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3