Noval soliton solution, sensitivity and stability analysis to the fractional gKdV-ZK equation

Author:

Shakeel Muhammad,Zafar Asim,Alameri Abdu,Junaid U Rehman Muhammad,Awrejcewicz Jan,Umer Muhammad,Zahid Muhammad,Sooppy Nisar Kottakkaran

Abstract

AbstractThis work examines the fractional generalized Korteweg-de-Vries-Zakharov-Kuznetsov equation (gKdV-ZKe) by utilizing three well-known analytical methods, the modified $$\left( \frac{G^{'}}{G^2}\right)$$ G G 2 -expansion method, $$\left( \frac{1}{G^{'}}\right)$$ 1 G -expansion method and the Kudryashov method. The gKdV-ZK equation is a nonlinear model describing the influence of magnetic field on weak ion-acoustic waves in plasma made up of cool and hot electrons. The kink, singular, anti-kink, periodic, and bright soliton solutions are observed. The effect of the fractional parameter on wave shapes have been analyzed by displaying various graphs for fractional-order values of $$\beta$$ β . In addition, we utilize the Hamiltonian property to observe the stability of the attained solution and Galilean transformation for sensitivity analysis. The suggested methods can also be utilized to evaluate the nonlinear models that are being developed in a variety of scientific and technological fields, such as plasma physics. Findings show the effectiveness simplicity, and generalizability of the chosen computational approach, even when applied to complex models.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3