Author:
Gao Maosheng,Wu Qingli,Li Jianke,Wang Bailing,Zhou Zhongyu,Liu Chunming,Wang Dong
Abstract
AbstractTemperature has an important influence on plant growth and development. In protected agriculture production, accurate prediction of temperature environment is of great significance. However, due to the time series, nonlinear and multi coupling characteristics of temperature, it is difficult to achieve accurate prediction. We proposed a method for building a solar greenhouse temperature prediction model based on a timeseries analysis, that considers the time series characteristics and dynamic temperature changes in the greenhouse system. The method would predict the temperature of greenhouse, and provide reference for the temperature change law in protected agriculture. A parameter analysis was performed on the nonlinear autoregressive exogenous (NARX) neural network, and a solar greenhouse temperature time series prediction model was established using the NARX regression neural network. The results showed that the proposed model depicted a maximum absolute error of 0.67 °C, and model correlation coefficient of 0.9996. Compared with the wavelet and BP neural networks, the NARX regression neural network accurately predicted and significantly outperformed in the solar greenhouse temperature prediction model. Moreover, the prediction model can accurately predict temperature trends within the solar greenhouse and is pivotal to obtaining precise control of solar greenhouse temperature.
Funder
Natural Science Basic Research Program of Shaanxi
Publisher
Springer Science and Business Media LLC
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献