Comparison of the diagnostic efficacy of mathematical models in distinguishing ultrasound imaging of breast nodules

Author:

Li Lu,Deng Hongyan,Ye Xinhua,Li Yong,Wang Jie

Abstract

AbstractThis study compared the diagnostic efficiency of benign and malignant breast nodules using ultrasonographic characteristics coupled with several machine-learning models, including logistic regression (Logistics), partial least squares discriminant analysis (PLS-DA), linear support vector machine (Linear SVM), linear discriminant analysis (LDA), K-nearest neighbor (KNN), artificial neural network (ANN) and random forest (RF). The clinical information and ultrasonographic characteristics of 926 female patients undergoing breast nodule surgery were collected and their relationships were analyzed using Pearson's correlation. The stepwise regression method was used for variable selection and the Monte Carlo cross-validation method was used to randomly divide these nodule cases into training and prediction sets. Our results showed that six independent variables could be used for building models, including age, background echotexture, shape, calcification, resistance index, and axillary lymph node. In the prediction set, Linear SVM had the highest diagnosis rate of benign nodules (0.881), and Logistics, ANN and LDA had the highest diagnosis rate of malignant nodules (0.910~0.912). The area under the ROC curve (AUC) of Linear SVM was the highest (0.890), followed by ANN (0.883), LDA (0.880), Logistics (0.878), RF (0.874), PLS-DA (0.866), and KNN (0.855), all of which were better than that of individual variances. On the whole, the diagnostic efficacy of Linear SVM was better than other methods.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mathematical model of mixed invasive ductal and lobular breast cancer;Network Modeling Analysis in Health Informatics and Bioinformatics;2024-05-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3